ferent conditions, but the results were consistent to $0.01 \%$. After the cell had been leak tested at 3600 $\mathrm{kg} / \mathrm{cm}^{2}$, its volume increased $0.07 \%$. To the final volume of $0.29405 \mathrm{~cm}^{3}$ at 1 atmos and $300^{\circ} \mathrm{K}$, corrections were made for: (1) the decrease caused by insertion of the capillary tube leading out of the bath (determined by geometry to be $0.00175 \mathrm{~cm}^{3}$ ) ; (2) the contraction with decrease in temperature; and (3) the expansion with increase in pressure. For (2), the linear thermal expansion coefficients of stainless steel AISI No. 304 measured by Altman, Rubin, and Johnston ${ }^{7}$ were used, giving a maximum correction of $-0.9 \%$ at $60^{\circ} \mathrm{K}$. To calculate (3), Eqs. (3.11) and (3.14) of Newitt ${ }^{8}$ for $\delta R / R$ and $\delta L / L$, respectively, were summed as $\delta V / V=\delta L / L+2(\delta R / R)$. The computations were made with the $77^{\circ} \mathrm{K}$ value of Young's modulus, $27 \times 10^{6}$ psi, based on the work of Zambrow and Fontana ${ }^{9}$ on 18-8 steels and of the International Nickel Company ${ }^{10}$ on AISI No. 304 stainless steel. The value of Poisson's ratio was estimated ${ }^{11}$ to be $0.30 \pm 0.05$ (where the possible error in the ratio is equivalent to $\pm 2.8 \%$ of the correction). At $3500 \mathrm{~kg} / \mathrm{cm}^{2}$ the expansion correction amounted to $+0.5 \%$ of the cell volume.
There were two dead volumes of concern to this research. The one of major importance, designated $v_{1}$, was that volume included in the capillary "Tee" between the seats of valves 3 and 4 , excluding the highpressure cell. The quantity of gas contained in $v_{1}$ appears as a negative correction to the density determinations us discussed later in Sec. E. Dead volume $v_{2}$ was included between valves 2 and 4 with valve 3 open exactly one-half turn. This volume enters a small correction term for pressure mismatch, which is also discussed in Sec. E.
Volumes $v_{1}$ and $v_{2}$ were determined separately by filling them at room temperature with He to 1000 $\mathrm{kg} / \mathrm{cm}^{2}$ and then transferring the contents into the low-pressure volume-manometer. The determinations were carried out with a plug substituting for the highpressure cell. Volumes were computed from densities for He reported by Wiebe, Gaddy, and Heins. ${ }^{12}$ The results were $v_{1}=0.02222 \mathrm{~cm}^{3}$ and $v_{2}=0.1860 \mathrm{~cm}^{3}$.

## E. Corrections

The quantity of gas in the dead volume $v_{1}$ during liquid density experiments was computed from $P-V-T$ data for $\mathrm{N}_{2}$ measured by Michels, Wouters, and de Boer ${ }^{13}$

[^0]and by Benedict. ${ }^{14}$ The calculation took account of the temperature gradient along the lead-in capillary, which was determined experimentally by thermocouples. The total dead volume correction varied with pressure from 0.8 to $6 \%$ of the liquid specific volume. The extrapolation from the experimental to the melting temperature was made with our thermal expansion coefficient and amounted to less than $0.1 \%$ of the specific volume.

The observation of the melting process actually involved the constant-pressure change in state as follows: solid at $T_{a} \rightarrow$ liquid at $T_{b}$. In order to get the volume change of melting, one must correct for the expansion due to warming of the solid from $T_{a}$ to $T_{m}$ and of the liquid from $T_{m}$ to $T_{b}$. For the latter, the directly observed thermal expansion coefficient $\alpha_{l}$ was used; whereas for the expansion of the solid, an indirectly determined correction was obtained by freezing the nitrogen at different temperatures at the start of $\Delta V_{m}$ measurements, then choosing the $\alpha_{s}$ giving the most consistent values of $\Delta V_{m}$. The expansion corrections amounted to 1 to $2 \%$ and 2 to $4 \%$ of $\Delta V_{m}$ for the liquid and solid, respectively.

In the event of pressure mismatch between the manganin gauge and free-piston gauge when valve 3 was opened after completion of a $\Delta V_{m}$ or $\alpha_{l}$ measurement, a knowledge of volume $v_{2}$, in conjunction with density data, ${ }^{13,14}$ permitted calculation of the deficient or excess gas in the volume-manometer. This correction was as large as $1 \%$ of $\Delta V_{m}$ at $80 \mathrm{~kg} / \mathrm{cm}^{2}$, where $\mathrm{N}_{2}$ compressibility is great, but it was essentially zero at $3500 \mathrm{~kg} / \mathrm{cm}^{2}$.

During the $\Delta V_{m}$ and $\alpha_{l}$ studies at $1920.7 \mathrm{~kg} / \mathrm{cm}^{2}$, a slight leak appeared in the system between valves 3 and 4 , for which corrections were made from the observed


Fig. 2. The volume change on melting vs pressure for $\mathrm{N}_{2}$.

[^1]
[^0]:    ${ }^{7}$ Altman, Rubin, and Johnston of The Ohio State University; (private communication).
    ${ }^{8}$ Dudley M. Newitt, The Design of High Pressure Plant and the Properties of Fluids at High Pressures (Oxford University Press, London, 1940), pp. 43-45.
    ${ }^{9}$ J. L. Zambrow and M. G. Fontana, Trans. Am. Soc. Metals 41, 480 (1949).
    ${ }^{10}$ Reported by V. N. Krivobok in National Bureau of Standards Circular 520, 1952 (unpublished), p. 123.
    ${ }^{11}$ Metals Handbook, edited by Taylor Lyman (The American Society for Metals, Cleveland, Ohio, 1948), p. 431.
    ${ }^{12}$ Wiebe, Gaddy, and Heins, J. Am. Chem. Soc. 53,1721 (1931).
    ${ }^{13}$ Michels, Wouters, and de Boer, Physica 3, 585 (1936).

[^1]:    ${ }^{14}$ Manson Benedict, J. Am. Chem. Soc. 59, 2224 (paper I); 2233 (paper II) (1937).

